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Abstract

Generally, it is not easy to analyze the stability of time-delay systems, especially when the systems are of high order or

they have multiple delays. For retarded time-delay systems, the stability can be determined by the rightmost characteristic

root. This paper presents a case study on the calculation of the rightmost root. Three practical time-delay systems are

discussed. The first system is an oscillator with delayed state feedback, the second one is a delayed neural network based on

the FitzHugh–Nagumo model for neural cells, and the third one is a car model of suspension with a delayed sky-hook

damper. By using the Lambert W function, the rightmost root becomes a root of a function associated with the principal

branch of the Lambert W function. Then the rightmost root is located by using Newton–Raphson’s scheme or Halley’s

accelerating scheme. Some suggestions for successful application of the proposed method are given.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of the active control techniques, much attention has been paid to the dynamical
systems with time delays over the past decades. It is frequently the time delay, caused usually from controllers,
actuators, human–machine interaction, etc. [1–4], that renders the systems unstable, so the stability analysis is
essentially important in the dynamics and control of time-delay systems (TDSs for short), and it can be
analyzed by means of the Lyapunov’s method including the linear matrix inequality (LMI) technique and the
root location of the characteristic quasi-polynomials. Each of the two methods has advantages over the other.
The Lyapunov’s function(al)-based methods work locally around an equilibrium or globally, but they usually
yield conservative results. While the method of characteristic function works locally around the equilibrium
only, it may give deliberate results about the stability analysis. The books [2–4] present comprehensive
discussion on the stability analysis of TDSs.
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.04.052

ing author at: Institute of Vibration Engineering Research, Nanjing University of Aeronautics and Astronautics,

, China.

ess: zhwang@nuaa.edu.cn (Z.H. Wang).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.04.052
mailto:zhwang@nuaa.edu.cn


ARTICLE IN PRESS
Z.H. Wang, H.Y. Hu / Journal of Sound and Vibration 318 (2008) 757–767758
The maximal real part of the characteristic roots of a TDS is usually called ‘‘abscissa’’. For TDS with real
coefficients, the abscissa corresponds to one real root or one pair of complex conjugate roots of the
characteristic quasi-polynomial. Such a root or a pair of conjugate roots will be simply called the rightmost
characteristic root (or, the rightmost root). An equilibrium of a TDS is asymptotically stable if and only if the
abscissa is negative, namely all the characteristic roots have negative real parts. A great number of criteria are
available for checking whether the abscissa is negative or not, including the Pontryakin criterion [4], the
Hassard criterion [5] and the Nyquist criterion [6]. Such criteria can be applied in the determination of the
admissible feedback gains of PID controllers [7]. In many applications such as in delayed resonator vibration
absorbers [8] and vehicle systems [9], the systems are high dimensional and possibly with multiple delays, so
that it is usually impossible to get a stability criterion in closed form. On the other hand, a stable system may
have very poor performance. This is the case when the abscissa is negative but it is very close to zero. In the
design phase of controllers, the admissible feedback gains falling in such a case is useless in practical
applications. Thus, it is highly demanded to develop some effective algorithms for the calculation of the
abscissa (or, the rightmost root) of a give time-delay system.

For some simple TDSs, the characteristic roots can be expressed explicitly in terms of the Lambert W
function (which has infinite many branches) [10–13], so that the abscissa has a closed form in terms of the
principal branch only. Unfortunately, it is usually required to find out the characteristic roots numerically
such as by using iteration methods, because no closed form of the characteristic roots exists for general TDSs
[14]. Though the iteration methods may work effectively in finding a characteristic root, no criteria are
available to determine whether the root is the rightmost one or not, because a quasi-polynomial has an infinite
number of roots. On the other hand, within a restricted bounded region in the complex plane there are finite
many characteristic roots only [4], so in Ref. [15], a computational method was proposed on the basis of the
Zakian’s iteration [16] and the searching technique. Zakian’s algorithm may also work effectively for TDSs if
the Nyquist criterion is combined. Another iteration algorithm for finding the abscissa was reported in Ref.
[17], where starting from a properly chosen initial guess of the rightmost characteristic root, each iteration
needs to fix the exponential factors so that the quasi-polynomial is simplified to a polynomial and then the
rightmost root of the simplified polynomial can be obtained to serve as the new guess. The problem is that the
iterative sequence in Ref. [17] is frequently not convergent.

The main objective of this paper is to present a case study on the computation of the rightmost
characteristic root of time-delay systems, on the basis of the Lambert W function. To this end, some basic
facts about the Lambert W function are given firstly in Section 2, then two algorithms are presented for finding
the rightmost root. From Sections 3–5, the iteration method is applied to calculate the rightmost root of three
practical time-delay systems. The first system is an oscillator with delayed feedback, the second one is a
delayed neural network based on the FitzHugh–Nagumo model for neural cells, and the third one is a car
model of suspension with a delayed sky-hook damper. Finally, some concluding remarks and suggestions for
successful application of the method are given in Section 6.
2. The Iteration Method

In this paper, attention is paid to the stability analysis of retarded-type time–delay systems, whose
characteristic function are quasi-polynomials of the form

pðlÞ:¼ln
þ
Xn

i¼1

aiðe
�lt1 ; e�lt2 ; . . . ; e�ltmÞln�i (1)

where tj40, ðj ¼ 1; 2; . . . ;mÞ, are the time delays, and the coefficients aiðx1; x2; . . . ;xmÞ, ði ¼ 1; 2; . . . ; nÞ, of ln�i

in pðlÞ are polynomials with respect to x1;x2; . . . ; xm. Let a0 be the abscissa

a0:¼maxfReðlÞ : pðlÞ ¼ 0g (2)

where ReðzÞ stands for the real part of z. Then the equilibrium of the TDS is asymptotically stable if and only
if a0o0. An iteration method will be presented for the calculation of the rightmost root so that the stability of
a given time-delay system is determined.
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2.1. The Lambert W function

The proposed iteration method for finding the rightmost characteristic root of TDS is based on the Lambert
W function [10], which will be firstly introduced briefly in this subsection. The Lambert W function w ¼W ðzÞ

is defined as the solution of a complex transcendental equation

wew ¼ z ðz 2 CÞ (3)

The solution W ðzÞ has infinite many branches, denoted by W kðzÞ, k ¼ 0;�1;�2; . . . ;�1, respectively. The
branches can be presented as below [10,11]

W 0ðzÞ ¼
X1
n¼1

ð�nÞn�1

n!
zn

W kðzÞ ¼ lnkðzÞ � lnðlnkðzÞÞ þ
X1
l¼0

X1
m¼1

Clm

ðlnðlnkðzÞÞÞ
m

ðlnkðzÞÞ
lþm

where lnkðzÞ ¼ lnðzÞ þ 2pki indicates the kth logarithm branch, and the coefficients Clm can be expressed in

terms of Stirling cycle numbers Clm ¼
ð�1Þl

m!
lþm
lþ1

h i
. W 0ðzÞ is the unique branch that is analytic at the origin z ¼ 0

and is called the principal branch. For more details about the Lambert W function, it is referred to
Refs. [10–12]. In particular, it has been proved in Ref. [13] that for given z 2 C, Re½W kðzÞ� is decreasing with
respect to k if the integer k40, and it is increasing in k if ko0. In addition, one has [13]

Re½W 0ðzÞ� ¼ max
k¼0;�1;�2;...;�1

Re½W kðzÞ� ð8z 2 CÞ (4)

Thus, the zeros of the following quasi-polynomial:

pðlÞ ¼ l� a� be�lt ða; b 2 CÞ (5)

have a closed form in terms of the Lambert W function [11]. In fact, pðlÞ ¼ 0 implies ðl� aÞteðl�aÞt ¼ tbe�at,
thus, the infinite many roots of pðlÞ ¼ 0 can be expressed by

l ¼ aþ
1

t
W kðtbe�atÞ; ðk ¼ 0;�1;�2; . . .Þ (6)

Thus, all the roots of pðlÞ have negative real part if and only if

a0 ¼ ReðaÞ þ
1

t
ReðW 0ðtbe�atÞÞo0 (7)

An extension is also made in Ref. [11] for some TDSs of high order. It is worthy to note that Maple,
Matlab and Mathematica, the three well-known computer algebras, provide a calculator of the
Lambert W function. So with the help of Maple, the computation related to the Lambert W function is
easy tractable.

For demonstration, let us study the stability of a time-delay system arising in visually guided movement [18]

_fðtÞ ¼ �a sin½fðtÞ � ot� � b sin½fðt� tÞ� (8)

where f stands for the phase difference between the target signal and the tracking signal, a, b and o are
positive real constants. Consider the equilibrium of the form [18]

f0 ¼
ot
2
þ arctan

a� b
aþ b

tan
ot
2

� �

Let yðtÞ ¼ fðtÞ � f0, then the characteristic quasi-polynomial of the linearized equation _yðtÞ ¼ aðtÞyðtÞ þ
bðtÞyðt� tÞ is pðlÞ ¼ l� aðtÞ � bðtÞe�lt with aðtÞ and bðtÞ given by

aðtÞ ¼ �a cos
ot
2
� arctan

a� b
aþ b

tan
ot
2

� �� �
; bðtÞ ¼ �b cosf0
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Fig. 1. The plot of the abscissa a0 vs t of Eq. (8) for o ¼ 1, a ¼ 1 and b ¼ 1. Stability switches [1] occur at t ¼ t̂k ¼ ð2k þ 1Þp,
ðk ¼ 0; 1; 2; . . .Þ. In t 2 ðt̂1; t̂2Þ, the stability is very ‘‘poor’’.
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The equilibrium f0 is asymptotically stable if and only if

a0:¼aðtÞ þ
1

t
Re½W 0ðtbðtÞe�aðtÞtÞ�o0 (9)

Fig. 1 is the plot of the abscissa a0 vs t for a ¼ b ¼ o ¼ 1. The equilibrium f0 is asymptotically
stable for t 2 ½0; pÞ [ ð3p; 5pÞ [ � � �, but the performance of the stable system with t 2 ð3p; 5pÞ [ � � � is
very poor.

2.2. Algorithms

Assume that l is a root of the characteristic equation pðlÞ ¼ 0, then

ðalþ bÞealþb ¼ ðalþ b� pðlÞÞealþb

for some properly chosen constants a40 and b, thus, there is a iX0 such that l is a root of

alþ b ¼W iððalþ b� pðlÞÞealþbÞ

Due to Eq. (4), it is expected to find out the rightmost root through the principal branch W 0 of the Lambert W
function, hence, an iteration sequence can be constructed intuitively from

alkþ1 þ b ¼W 0ððalk þ b� pðlkÞÞe
alkþbÞ ðk ¼ 0; 1; 2; . . .Þ (10)

However, such a sequence is frequently not convergent. This is the common problem that encountered in
solving nonlinear equation by using the iteration method. That is, one usually cannot find out a root of
f ðxÞ ¼ 0 simply from the iteration sequence xkþ1 ¼ xk � f ðxkÞ. Instead, the algorithms based on the
Newton–Raphson scheme should be employed. Let

F ðlÞ:¼alþ b�W 0ððalþ b� pðlÞÞealþbÞ (11)

and l0 be an initial guess, then the rightmost root of pðlÞ can be found from one of the following two iteration
schemes:
�
 Newton– Raphson’s scheme [19]

liþ1 ¼ li �
F ðliÞ

F 0ðliÞ
ði ¼ 0; 1; 2; . . .Þ (12)
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Halley’s accelerating scheme [19]
�
liþ1 ¼ li �
F ðliÞ

F 0ðliÞ
1�

F ðliÞF
00ðliÞ

2ðF 0ðliÞÞ
2

� ��1
ði ¼ 0; 1; 2; . . .Þ (13)
where the derivative can be computed by using the property

W 0
0ðzÞ ¼

W 0ðzÞ

zþ zW 0ðzÞ

For a given tolerance e, the iteration is stopped if

jliþ1 � lijoe (14)

Halley’s scheme is the standard algorithm in solving nonlinear equations related to the Lambert W function in
the software Maple.

In general, an iteration method works only if the initial guess is close to the root of concern.
Thus, a successful application of the two iteration schemes depends on a proper chosen l0. There are
many ways to choose an initial guess. For example, for a freely given l̂0, we firstly solve the polynomial
equation

ln
þ
Xn

i¼1

aiðe
�l̂0t1 ; e�l̂0t2 ; . . . ; e�l̂0tm Þln�i

¼ 0 (15)

then the initial guess l0 can be taken as the rightmost root of Eq. (15), by following the idea of Krodkiewski
and Jintanawan [17]. Eq. (15) can also be replaced with ln

þ
Pn

i¼1aið1; 1; . . . ; 1Þl
n�i
¼ 0, the case of l̂0 ¼ 0

for Eq. (15).
Finally it remains to confirm the iteration result. The Nyquist plot is preferred for this purpose. Let

RðoÞ þ i;SðoÞ:¼
pðioÞ
ð1þ ioÞn

(16)

As proved in Ref. [6], all the roots of pðlÞ have negative real parts if and only if the Nyquist plot of
pðioÞ=ð1þ ioÞn, namely the plot of

fðRðoÞ;SðoÞÞ : o 2 ð�1;þ1Þg (17)

does not encircle the origin of the complex plane, and it has at least one root with positive real part if the
Nyquist plot encircles the origin. Let l ¼ sþ a, then ReðlÞpa if and only if ReðsÞp0. Hence, l ¼ l� is the
rightmost root if and only if (i). the Nyquist plot of pðioþReðl�ÞÞ=ð1þ ioÞn passes through the origin of the
complex plane, and (ii). the Nyquist plot of pðioþReðl�Þ þ ZÞ=ð1þ ioÞn does not encircle the origin, for any

small Z40. The first condition indicates that pðsþReðl�ÞÞ has a root with zero real part, namely pðlÞ has a
root with real part Reðl�Þ. The second condition implies that all the roots of pðsþReðl�Þ þ ZÞ have negative
real parts, namely pðlÞ have roots with real parts less than Reðl�Þ þ Z only, and consequently, pðlÞ have roots
with ReðlÞpReðl�Þ only, because Z is an arbitrary small number.

3. The rightmost characteristic root of an oscillator with delayed state feedback

Now, we give three practical examples to demonstrate the proposed iteration method for finding the
rightmost root of the characteristic equations. Firstly, let us study the stability of an oscillator with delayed
state feedback

€xðtÞ þ x _xðtÞ þ kxðtÞ ¼ uxðt� t1Þ þ v _xðt� t2Þ (18)

whose characteristic equation reads

pðlÞ:¼l2 þ xlþ k � ue�lt1 � vle�lt2 ¼ 0 (19)
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where t140, t240 are the time delays. Without loss of generality, assume that xa0. The function F ðlÞ in
Eq. (11) reads

F ðlÞ ¼ xlþ k �W 0ð�ðl
2
� ue�lt1 � vle�lt2 ÞexlþkÞ (20)

In order to avoid numerical problems, the values of x and k should be assumed not large. Otherwise, a scaling
factor b is usually required so that the constants bx and bk in the function

F ðlÞ ¼ bðxlþ kÞ �W 0ð�bðl
2
� ue�lt1 � vle�lt2 ÞebðxlþkÞÞ (21)

are not large. Then, the rightmost characteristic root can be found by using Newton–Raphson’s scheme (12)
or Halley’s accelerating scheme (13). To show the validity of this method, let us check some special cases
(randomly chosen), where the tolerance e ¼ 10�4 is fixed.

Example 1. x ¼ 1, k ¼ 4, u ¼ �2, v ¼ 0 and t1 ¼ 0:5. In this case, a good initial guess is l0 ¼ �0:5þ 2:0i,
which is close to one of the solutions of the simplified polynomial equation l2 þ lþ 4� ð�2Þe0�t1 ¼ 0. Then
with the tolerance e ¼ 10�4, the third Newton–Raphson’s iteration and the second Halley’s iteration give the
same result l ¼ �0:7906� 10�1 þ 0:2206� 101i. The same result can be obtained after 23 iterations
(Newton–Raphson’s scheme) and 7 iterations (Halley’s scheme), respectively, if l0 ¼ 15þ 1:1i. Moreover, one
can confirm that l ¼ �0:7906� 10�1 � 0:2206� 101i is the rightmost characteristic root by using the Nyquist
plot in Fig. 2.

Example 2. x ¼ 1, k ¼ 4, u ¼ �2, v ¼ 0 and t1 ¼ 2:5. In this case, l0 ¼ 15þ 1:1i is a bad choice of initial guess
for Newton–Raphson’s scheme which results in an un-convergent sequence, but it gives a convergent result
l ¼ �0:1264þ 0:1131� 101i after 7 iterations of Halley’s scheme. Again, l0 ¼ �0:5þ 2:0i is a good choice of
the initial guess. Together with the Nyquist test shown in Fig. 2, the iteration method computes the rightmost
root to be l ¼ �0:1264� 0:1131� 101i after 5 iterations (Newton–Raphson’s scheme) and 4 iterations
(Halley’s scheme), respectively.

Example 3. x ¼ �1, k ¼ 4, u ¼ �2, v ¼ �0:1, t1 ¼ 2:5 and t2 ¼ 1:5. In this case, starting from the initial
l0 ¼ 0:5þ 2:0i, the rightmost root can be found out and confirmed by means of the Nyquist plot to be
l ¼ 0:3209� 0:2017� 101i after 3 iterations (Newton–Raphson’s scheme) and 2 iterations (Halley’s scheme),
respectively.

Example 4. x ¼ �1, k ¼ 1:2, u ¼ �2, v ¼ �1:2, t1 ¼ 1:2 and t2 ¼ 1:8. In this case, let l0 ¼ 0:5þ 2:0i be the
initial guess, then the rightmost root can be found out and confirmed by means of the Nyquist plot to be
l ¼ 0:3209� 0:2017� 101i after 6 iterations (Newton–Raphson’s scheme) and 3 iterations (Halley’s scheme),
respectively.
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Fig. 2. For x ¼ 1, k ¼ 4, u ¼ �2, v ¼ 0, t1 ¼ 0:5 and t2 ¼ 0, the rightmost root of pðlÞ for Eq. (18) is l ¼ �0:7906� 10�1 � 0:2206� 101i.

(Left) The Nyquist plot of pðio� 0:7906� 10�1Þ=ð1þ ioÞ2 passes through the origin of the complex plane. (Right) Zoom around the origin

of the Nyquist plot of pðio� 0:7906� 10�1 þ 0:05Þ=ð1þ ioÞ2, which does not encircle the origin of the complex plane.
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l0 ¼ 0:3þ 2:0i and e ¼ 10�8.
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The iteration method can produce the curve of the abscissa vs a parameter, similar to Fig. 1. For example,
let t1 ¼ t2 ¼ t be the control parameter. At t ¼ 0, the trivial solution is asymptotically stable because pðlÞ is
Hurwitz. As t increases, the trivial solution keeps to be asymptotically stable until t ¼ tj for which the
characteristic equation has a pair of conjugate pure imaginary roots l ¼ �io. More precisely, let x ¼ 1, k ¼ 4,
u ¼ �2, v ¼ 0, as discussed in Example 1, and t1 ¼ t be the control parameter, then pð�ioÞ ¼ 0 yields
jðioÞ2 þ ioþ 4j2 � ð�2Þ2 ¼ 0, namely o4 � 7o2 þ 12 ¼ 0. This equation has four roots o1;2 ¼ �2,
o3;4 ¼ �

ffiffiffi
3
p

. The corresponding critical delay values are

t1;j ¼ jpþ
p
4
; t2;j ¼ ½ð2j þ 1Þp�

p
3
�=

ffiffiffi
3
p

ðj ¼ 0; 1; 2; . . .Þ

Since t2;0 ¼ 1:20940:7854 ¼ t1;0 and

Re½l0ðt1;jÞ�40; Re½l0ðt2;jÞ�o0 ðj ¼ 0; 1; 2; . . .Þ

the trivial solution x ¼ 0 is asymptotically stable for t 2 ½0; t1;0Þ [ ðt2;0; t1;1Þ [ ðt2;1; t1;2Þ � � � [ ðt2;5; t1;6Þ, and it is
unstable for t 2 ðt1;0; t2;0Þ [ ðt1;1; t2;1Þ [ � � � ðt1;5; t2;5Þ [ ðt1;6;þ1Þ [1]. Fig. 3 shows that the stability analysis
given above is the same with the plot of the abscissa by using the iteration method.

4. The rightmost characteristic root of a third-order time-delay system arising from neuron networks

Next, let us consider the following time-delay system based on the FitzHugh–Nagumo model for neural
cells [20]

t _uðtÞ ¼ �uðtÞ þ qgðvðt� TÞÞ þ e

_vðtÞ ¼ cðwðtÞ þ vðtÞ �
1

3
v3ðtÞÞ þ uðtÞ

_wðtÞ ¼ ða� vðtÞ � bwðtÞÞ=c

8>><
>>: (22)

where u denotes the total postsynaptic potential, v is the membrane potential, w is an auxiliary
variable, and the time delay T is the propagation time of neural signals between the axon and
dendrites. When gðxÞ ¼ 1=ð1þ e�4xÞ, the characteristic function corresponding to the stationary solution
ðū; v̄; w̄Þ reads

pðlÞ ¼ l3 þ k20l
2
þ ðk11e

�lT þ k10Þlþ k01e
�lT þ k00
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or in short

pðlÞ ¼ k10lþ k00 þ qðl; e�lT Þ

where

k20 ¼ ðtc2v̄2 þ cþ tb� tc2Þ=ðtcÞ

k11 ¼ ð�4qe�4v̄Þ=ðð1þ e�4v̄Þ
2tÞ

k10 ¼ ð�tcbþ tcv̄2bþ tcþ bþ c2v̄2 � c2Þ=ðtcÞ

k01 ¼ bk11=c

k00 ¼ ðcþ cv̄2b� cbÞ=ðtcÞ

By using the Lambert W function, it is easy to see that each root of pðlÞ is a root of one of the following
functions:

F ðj; lÞ:¼k10lþ k00 �W jð�qðl; e�lT Þek10lþk00Þ; j ¼ 0;�1;�2; . . .

In what follows, Halley’s scheme will be used to find the rightmost root of Eq. (22) through the function

F ðlÞ:¼k10lþ k00 �W 0ð�qðl; e�lT Þek10lþk00 Þ (23)

When a ¼ 0:9, b ¼ 0:9; c ¼ 2:0, q ¼ �1:0, e ¼ �2:5, t ¼ 40:0, T ¼ 30:0 [20], the system has a stationary
solution ðū; v̄; w̄Þ ¼ ð�2:5374;�0:8120; 1:9022Þ. In this case, the simplified polynomial (the transcendental
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Fig. 4. When a ¼ 0:9, b ¼ 0:9, c ¼ 2:0, q ¼ �1:0, e ¼ �2:5, t ¼ 40:0, T ¼ 30:0, Eq. (22) has a stationary solution

ðū; v̄; w̄Þ ¼ ð�2:5374;�0:8120; 1:9022Þ. (Left) The Nyquist plot of pðioÞ=ð1þ ioÞ3 encircles the origin of the complex plane, where the

curve ends at the limit point ð1; 0Þ. (Right). The Nyquist plot of pðioþ 0:1156Þ=ð1þ ioÞ3 passes through the origin of the complex plane.

Table 1

The rightmost characteristic root for Eq. (22) with a ¼ 0:9, b ¼ 0:9, c ¼ 2:0, q ¼ �1:0, t ¼ 40:0 and T ¼ 30:0, starting from 0:1156�
0:8247i

Parameter e The rightmost root l

e ¼ �2:55 0:6795� 10�1 þ 0:8557i
e ¼ �2:6 0:2137� 10�1 þ 0:8823i
e ¼ �2:62 0:3073� 10�2 þ 0:8915i
e ¼ �2:6234 0:8929i
e ¼ �2:625 �0:1473� 10�2 þ 0:8936i
e ¼ �2:63 �0:6008� 10�2 þ 0:8960i
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terms involving e�Tl in pðlÞ are replaced with 0) is

l3 � 0:2062551500l2 þ 0:6876538038lþ 0:01733587956 ¼ 0

which has 3 roots: 0:1156� 0:8247i;�0:2500� 10�1. Thus, l0 ¼ 0:1156� 0:8247i is a proper initial guess for
the iteration scheme. The first Halley’s iteration is the same as l0. It means that the rightmost characteristic
root 0:1156� 0:8247i, which is the same as that obtained in Ref. [20] by using DDE BIFTOOL. In addition,
the Nyquist plots in Fig. 4 confirms that the rightmost characteristic root is 0:1156� 0:8247i.

The roots of pðlÞ depend continuously on the parameter e, so a complex number near the rightmost root
0:1156� 0:8247i for e ¼ �2:5 is a suitable initial estimation for e near �2:5. Table 1 shows the variation of the
rightmost root of the characteristic quasi-polynomial of Eq. (22) with respect to e, and it tells that a Hopf
bifurcation occurs at e ¼ �2:6234. The corresponding Nyquist plots confirm all the numerical rightmost roots
given in Table 1.
5. The rightmost characteristic root of a quarter car model of suspension with a delayed sky-hook damper

Finally let us consider a time-delay system of two degrees of freedom arising from vehicle dynamics in
dimensionless form [9,1]

€xðtÞ þ c½ _xðtÞ � _yðtÞ� þ ½xðtÞ � yðtÞ� þ v _xðt� tÞ ¼ 0

€yðtÞ � bc½ _xðtÞ � _yðtÞ� � b½xðtÞ � yðtÞ� þ bkyðtÞ � bv _xðt� tÞ ¼ 0

(
(24)

where x denotes the vertical displacement of the vehicle body, y denotes the vertical displacement of the
unsprung mass, and t is the time delay in the feedback control of the sky-hook damper, all are in
dimensionless form. The characteristic quasi-polynomial is

pðlÞ ¼ l4 þ cð1þ bÞl3 þ ð1þ bþ bkÞl2 þ bcklþ bk þ vlðl2 þ bkÞe�lt (25)

In what follows, b ¼ 4:9153, k ¼ 11:301 and c ¼ 0:4 are fixed. The function F ðlÞ for finding out the rightmost
characteristic root for given t is chosen in the form:

F ðlÞ:¼clþ 1�W 0
ðbcklþ bk � pðlÞÞ

bk
eclþ1

� �
(26)

where the factor eclþ1, rather than ebcklþbk, is applied, since the latter one is a large factor that should be
avoided in numerical computation. We will show that the iteration method works effectively in finding out the
rightmost root for any given parameters.
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Fig. 5. For b ¼ 4:9153, k ¼ 11:301, c ¼ 0:4, v ¼ 0:6 and t ¼ 6:0, the fifth iteration of Newton–Raphson’s scheme finds the rightmost root

of pðlÞ for Eq. (25) to be l� ¼ �0:2582� 10�1 � 0:7109i. (Left) The Nyquist plot of pðio� 0:2582� 10�1 þ 0:01Þ=ð1þ ioÞ4 does not

encircle the origin of the complex plane. (Right) Zoom around the origin.
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Example 1. v ¼ 0:6 and t ¼ 0:5. We chose l̂0 ¼ 3þ 8:9i (randomly chosen), then the simplified polynomial

l4 þ cð1þ bÞl3 þ ð1þ bþ bkÞl2 þ bcklþ bk þ vlðl2 þ bkÞe�0:5l̂0

has 4 roots �0:9954þ 0:7670� 10i, �0:1457þ 0:8921i, �0:1611� 0:1013� 10i, and �0:1029� 10�
0:7678� 10i. Hence a proper choice of the initial guess is l0 ¼ �0:1457þ 0:8921i. The third iteration of
the Newton–Raphson’s scheme (or Halley’s scheme) gives the rightmost root �0:6149� 0:1072� 10i.

Example 2. v ¼ 0:6 and t ¼ 6. Begin with the initial guess l0 ¼ �0:1457þ 0:8921i, the iteration method finds
the rightmost root �0:2582� 10�1 � 0:7109i after 5 iterations (Newton–Raphson’s scheme) or 3 iterations
(Halley’s scheme) respectively, which can be confirmed by the Nyquist plot given in Fig. 5.

Example 3. v ¼ �0:1 and t ¼ 2:5. Let l̂0 ¼ 10þ 3:5i (randomly chosen), then the rightmost root of the
simplified polynomial

l4 þ cð1þ bÞl3 þ ð1þ bþ bkÞl2 þ bcklþ bk þ vlðl2 þ bkÞe�2:5l̂0

is �0:1699� 0:9483i. Starting from the initial guess l0 ¼ �0:1699� 0:9483i, the third iteration of
Newton–Raphson’s scheme (or the second iteration of Halley’s scheme) gives the rightmost root
�0:2032� 0:8793i.

6. Conclusions

With the help of the Lambert W function, the rightmost characteristic root (or the abscissa) of a retarded
time-delay system can be found simply by using the famous Newton–Raphson’s scheme or Halley’s scheme.
The idea of using an iteration method to find out a root of a nonlinear equation is not new, the present work
makes it possible to find out the rightmost root by using iteration methods. Three points are important for a
successful application of the proposed method. (i) The freely chosen constants a and b in the function F ðlÞ
should be not large so as to avoid numerical problems. (ii) The initial guess can be chosen in different ways,
say, taken as the rightmost root of the simplified polynomial defined by Eq. (15). (iii) The computation result
should be confirmed by using the Nyquist graphical test. As shown in the 3 illustrative examples, the rightmost
root of TDSs can be located successfully by a few number of iterations of Newton–Raphson’s scheme or
Halley’s scheme.

Though the proposed iteration methods work effectively for TDSs of retarded type as shown in this paper, a
rigorous mathematical proof to the main results is still not available. In addition, the method may fail in
finding the rightmost root of TDSs of neutral type or that of the degenerated case: polynomials, for which
more tricks are usually required. This problem is left for future consideration.
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